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Abscract

An efficient parallel algorithm
matchings in convex Dbipartite
algorithm can ba used to obtain
ritnms

to obtain maximum
graphs is obtained. This
efficient parallel algo-
for several scheduling problems. Some examples are:
job scheduling with release times and Jeadlines; scneduling

to .ainimize maximum cost; and preemptive scneduling to
minimize maximum compl2tion time.
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4. Introduction

A convex bipartite graph & is a triple (A,B,E). A =

{fa,,a,,¢sv05a } and 8 = {pb ,0,,...0_} are disjoint sats of

ve%tiées. £%is tae edge set, B satisPies the followiag pro-

pertias:

(1) If (i,j) is an edge of £, then either i<A and j<B or i
<B and j<A; 1i.e., no edge joins two vertices in A or
two in B.

(2) (f (ai,bj)4ﬁ and (ai,bj+k)<E, then (ai'bj+q)‘E' L<g<k.

Property (1) above is the bipartite property while property
(2) is tne convexity property. An example convex bipartite
graph is shown ian Figure l.1.

A B
al bl
) by
a, o by
3,
2s

Figure 1.1 A convex bipartite graph.

F c E is a matching in the convex bipartite grapn
G=(A,B,2) 1iff no two edges in F have a common endpoint.
Fl={(alb ), (a,.b5), (as,bl)}is a matching in the graph of

Figure f.l wnila F2={(a 'bl)'(al'b ).(az.ba)) is not. F is
a maximum cardinality ma%chlng (Or Simply a” maximum matcn-
ing) in G 1ff (a) F is a matcning and (b) G contains no
matching H such that Jid1>IF| (ldl=number of edges in H).
The matching depicted by solid lines in Figure L.l is a max-
imum matcning in that graph.

In what follows, we shall find it convenieant to have an
alternate representation of convex bipartite graphs. It is
clear that every convex Dbipartite graph G=(a,B.g),
A={a,,...,a_}, 8-{bl....,b } is unigquely represented by the
set éf trip?as: m .

T = i(ic’-chi) |1_<_i_<_n}
sisminijltai,bj)< £)

v
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hi=max{j|(ai,bj)<E}

intuitively, in the triple representation, we expli-~
citly record the smallest (s.) and nhighest (h.,) index ver-
tices to whicn each a, is conn3cted. For the” example of
fFigure 1.1, we have T = {(1,1,2), (2,3,3), (3,4,3), (4,3,3),
(5,1,3)1}.

As an exampla of the use of matchings in convex bipar-
tite grapns, consider tne problem of 3scheduling n unit time
jobs to minimize the number of tardy jobs. in this problem,
we are given a s2t, of n jobs. Job i has a release time r.
and a due time di' It requires one unit of processing.
subsec F of J is"a feasiple subset iff every job ian F can be
scheduled on one machine in such a way that no job i
scneduled Dbefore its release time or after its due time.
feasible subset F is a maximum feasible supset iff tnere i
no feasible subset g of J such that [Q[>[J].

[ ]

A maximum feasible subset F can be found by transform~
ing the problem into a maximum matching problem on a convex
bipartite graph. wWithout loss of generality, we may assume
that all the r.,s and d.s are natural numbers; min{r_ }=9;:
r.<d., l<i<n; and max {d.}¥n. The convex bipartite J§raph
cérrésponding to J is Jiven by the triple set T = {(i, S,
h;) | s,=r.,h.,=d.-1}. Figure 1.2 shows an example jop s&t
and the corresporniding convex bipartite graph G. Vertex i of
A represants job i while vertex i in B simply represents the
time slot ([i,i+l). There is an edge from job i to time slot
C3,3+1]) iff r <j<d.. iHence, every matching in G represents
a feasible slbset’of J. Also, corresponding to every feasi-
ble subset of J there is a matching in G. C(Clearly, a max-
imum cardinality feasible subset of J can be easily obtained
from a maximum matching of G. In addition, a maximum macch-
ing also provides the time slots in which the jobs snould be
scheduled.

We shall see several other examples of tne application
of matchings in convex bipartite graph3 in later sactions.

Glover {4] has obtained a rather simple algorithm to
find a maximum matching in a c¢onvex bipartite grapi
G=(A,B,E). Let n.=max{jl (a.,,b.)« E}, 1<i<|al. Glover's
algoritnm considérs the vertliced in B one by one starting at
b,. We first determine the set R of remaining vertices in A
to which the vertex b. currently beiag considered is con-
nected. Let g be such thdt aq‘R and h_ = min{h_}. Vertex

a_<R
b is matched to a_ and a_ deleted from th® graph. The next
vértex in B is ow cofisidered. Figure 1.3 specifies
Glover's algoritim more formaily. By using appropriate data
structures, Glover's algorithm can be implemented to run 1in
J(mn) time.
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Figure 1.2

rocedure MATCH(G,m,n,h)
/7/G=(A,B,E) is a convex bipartite graph.|Al=n,|Bl=m//

//n_=max{jl(a;,b.)4E}.A maximum matching//
//utis found/ ]
set M; integer m,n,n graph G
M<__¢ =L l:n
for i « 1 tomdo
let R be the set of remaining vertices to which bi
is coanected
if R#P then q<—j such that j<R and n.= min {n_}

f3d
M « M U{(a_,b.)]} PR
deleta a fr%m ﬁ

andif
end for T
return ()
end MATCH

Figure 1.3 Glover's maximum matching algorithm.

In this paper, we are primarily concerned with parallel
: algorithms. In Section 2, we obtain a parallel algorithm
) for maximum matchings in convex bipartite graphs. In Sec-
‘ tion 3, we use this parallel algorithm to obtain efficient
’ parallel algorithms for three scheduling problems.

The parallel computer model used is the shared memory

- model (sSMM). This is an example of a single instruction
’ stream multiple data stream (SIMD) computer. In a SMM com-
puter, there are p processing elements (P£s). Each PE is

capable of performing the standard arithma2tic and logical




operacions. The PEs are indexed J,1,...,p-1 and an indivi-
dual Pt may e refarenced as ia PE(i). E£acn PZ knows 1its
index and nas some local memory. in addition, there is a
global memory to which every PE has access. The PEs are syn-
chronized and operate under the control of a single iastruc-
tion stream. An enable/disable mask may be usad to selact a
subsat oOf the PEs that are to perform an iastructioan. 0Only
the enabled PEs will perform the instruction. Disabled PEs
remain idle. All enabled PEs execute tne same instruction.
The sec of enablad PEs may change from instruction to
instraction.

If two PSs attempt to simultaneously read tne same word
of the shared memory, a read conflict occurs. If two PEs
Attempt to simultaneously write into the same word of the
shared memory, a write conflict occurs. Throughout this
paper, we shall assume tnat read and write conflicts are
pronipited.

The reader is referred to [2] for a list of refereances
dealing with graph algoritnms, matrix algorithms, sortiag,
scheduling, etc. on a SMM computer.

2. Parallel Matching In Convex Bipartite Graphs

In Section 1, we showed that every instance of the problam
of scheduling jobs to minimize the number of tardy jobs
could be transformed into an equivalent instance of the max-
imum .atching in a convex bipartita graph problem. It
should be evident that the reverse is also true. Hence, the
two problems are isomorphic. A parallel algorithm for a
special case of the job scheduling formulation was optained
oy us in {l]. 1In this special case, it was assumed that all
jobs nave tne same release time. This corresponds to the
case when the convex Dbipartite graphs are of the form
T={(i,s;,h;)l1<i<n} s ;=c,1<i<n for some c.

we shall now procead to show how the solution for the
special case described above can p2 usaed to solve the gen-
eral case whea all the r.,s are not tne same. This will be
done using the binaryl tree metinod described by Dekel and
Sanni [2]). Rather than specify the new algorithm formally,
we shall describe how it works by means of an example.

A convex bipartite graph is shown in Figure 2.1. For
this graph, |Al=14 and |B|=13. The s, and h, values associ-
ated with each vertex of A are "given in the first two
columns of this figure. The first step in our parallel
algorithm for maximum matching is to sort the vertices in A
in nondecreasing order of 38,. Vertices with the same s, uare

sorted into nondecreasing ofder of hi. For our example, the
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Figure 2.1

result of this reordering is shown in Figure 2.2.

i{ 7 4 1|151(1219 (8 j11|14]1013
Si 1 1 41 4| 4719199 ]12]12112
h, 2 4 8 /]10}/11}110)11}13f12 (1313

Figure 2.2
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Following the sort, we identify the distinct s values.
Let these b2 R, ,R,,...,R_. Assume that R,< R,<...<R_. Let

+f max[dl}+l. FOr our &Sxample, k=4 anle(l%k+1) =k(1, 4,
2, 14)-

Wa are now ready to use the binary tree method of ({2].
The underlying computation tree we shall use is the unique
complete binary tree with k leaf nodes. Figure 2.3 shows
the complete binary trees with 4, 5, and 6 leaf nodes. For
our example, k=4 and we use tne tree of Figure 2.3(a). Wicth
each node, P, in the computation tree, we associate a con-
tiguous subset {u,u+l,u+2,...,v} of the vertices in B. This
subset is denoted {u,v].P or simply Lu,v].

(a) 4 leaves (b) 5 leaves (c) 6 leaves
Figure 2.3: Complete binary trees.

Let the leaf nodes of the computation tree be numbered
1 through k, left to right. If P is the ith leaf node, then
; Lu,v].P is [R..,R, +1 -1] (i.e., . and v=R If P 1is
- not a leaf ﬁodé then the subse% of B as&oélated with P is
fu,v}j.Lc(p) U [u,v].RC(P) where LC(P) and RC(P) are, respec-
tively, the left and right children of P. The subsets of B
associated with each of the vertices in tha computation tree
for our example are shown in Figure 2.4. The number in each
node of this tree is its index.

Let P be any vertex of the computation tree. Let [u,v]
be the subset of B associated with P. The subset of A avail-
able for matching at node P is denoted M(P) and is defined

Lo be:
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Figure 2.4

M(P)={ilugs;<v]

For,example,

M(l)={1121 "0114}7
M(2)=[l'213:41516:7112}:
:4(4)‘—’{2'314'7}7

etc.

The subset M(P) of A vertices available for matching at
P may be partitioned into three subsets Q(P), I(P), and
T(P). Q(P) 1s a maximum cardinality subset of M(P) that may
be matched with vertices in [u,v].P by algorithm MATCH; tnis
subset is called the matched set. ((P) denotes the infeasi-
ble set. It consists of all vertices i<M(P)-Q(P) such thac
n;<v. The transferred set T(P) consists of all vercices
idM(P)-a(P) such that n >v.

Consider node 2 of Figure 2.4. The matching proplem
defined at tihnis node is given in Figure 2.5. If Glover's
algorithm is used on this graph, then ({1,2,3,4,5,7,12}
defines a subset of A’ that can be matched with vertices in
B'. Further, this gives a maximum matching. dence,
Q(2)={1,2,3,4,5,7,12}; 1I(2)=6; and T(2)=p. Observe that
IQ(1)| is tne size of a maximum matching in the original
convex bipartite graph. Also, T(l)=¢ and I(1)=A-Q(1l).

We shall make two passes over the computation tree.
The first pass begins at the le2aves and moves towards the
root. During this pass, the Q, I, and T sets for each node
are computed. The second pass starts at the root and
progresses towards the leaves. In this pass, the Q set for
each node 1is updated so as to correspond to the set of A
vertices ma ~hed by ¢ ‘over's algorithm to the B vertices
asgociated . ' b node.




S, hi A' B'
4 8 10 O1
1 4 20 O2
1 3 30 Os
L 4 4O Qs
4 8 sO Os
4 4 60 Os
1 2 10O Oz
4 8 120 Os

Figure 2.5
Pass 1

In this pass, we make extensive use of the parallel algo-
ritnm developed in (1] for the case when all the s.s are the
same. For our purposes here, it is sufficient to “know the
sequential algorithm (FEAS of [1]) that this parallel algo-
rithm is based on. This saquential algorithm is given 1in
Pigure 2.6. For coanvenience, this has been translated into
the graph language used here.

line procedure FEAS(n,u,v)
//find a maximum matching of vertices in A onto the B
set (u,v] for every vertex i<A, s.=u//

:j>v: return(j) //all vertices in B matcned//
:j<h.: //select i// j <« j+1, MAT(i) & 1
end Case

14 end for

11 Treturn(j)

12 end FEAS

1 global MAT(l:n):; set A; integer n,ud,v,i,J
2 sort A into nondecreasing order of h,

3 MAT(l:n) <= J//initialize// 1

4 j & u

5 fori « 1 ton do

6 case

7

8

9

Figure 2.6
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An e2xamination of Glover's algorithm (Figure 1.3)
revaals that it performs exactly as does procedure FEAS when
the restrictions and simplifications applicable to FEAS are
incorporated into Figure 1l.3.

Hence, for a leaf node of tne computacion tree, the Q
set may be obtained by a direct application of procedure

FEAS (or its parallel eguivalent). For example, for node 4
of Figure 2.4, we nave A= M(4) = (2,3,4,7}; h,=4; h_ =3
n,=4; =2: u=l; and v=4. Using FEAS, wé obéain

h

Q%4)={7,3,2}. Jote that 2 consists of exactly those ver-
tices i with MAT(i)=l. I() consists of sxactly those ver-
tices i with MAT(i)=¢ and h,<v. The remaining vertices form
‘£(). The matched set Q, tréﬁsferred sec T, and 1infeasiole
set I for =eacn of the leaves ia our example are shown in
Figure 2.6. Null sets are not explicitly shown. So, for
node 4, I(4)=H; T(4)={4}; and Q(4)={7,3,2}. The sats are
ordered by hi'

For a nonleaf node P, the Q, I, and T sets may be
obtained by using the Q, I, and T sets of the children of P.
Let L and R, respectively, be the left and right children of
P. To determine Q(P), we use procedure FEAS with u=u_ and
v=v ([uR,v ] is the subset of B associatad with the right
chifa grY of P). The A set consists of T(L) U 2(R). Since
ooth T(L) and Q(R) are alr=ady sorted by h., the sort of
line 2 of FEAS can be replacaed by a merge.

Let S be the subset of T(L) U <Q(R) that has MAT()=1
following the execution of FEAS. The following theorem
establishes that Q(L) U S is a maximum cardinality subset of
M(P) that may be matched with vertices in [u,v].P. dence,
2(P)=2(L) U s.

Ifneorem 2.1: S as defined above is a maximum cardinality
subset of M(P) that may be matched with vertices in [u,v].P
using algoritnm MATCH.

Proof: The proof is by induction on the distance of P from
che farthest leaves in the subtree of wnicn it is a root.
if this distance is 1, then Q(L) and Q(R) are maxiimum cardi-
nality subsets of M(L) and M(R) that can, respectively, be
matched by Glover's algoritam with vertices in [u,v].L and
Lu,v].R. If tnis distance is greater than 1, then Q(L) and
Q{R) satisfy this maximum cardinality matching reguirement
by induction.

As far as node P is itself concerned, we see that only
vertices in i1(L) are candidates for matching with vertices
in Lu 'VLJ (recall that for vertices in M(R), the s. value
exceeds VL)- Furthermore, when Glover's algorithm™is used
with the A set being M(P) and the B set being [u, ,v,] =
(u,v].P, vertices in B are considered 1in the o?deg u_,

uL+1,...,vL, UpreeerVpe dence, Q(L) is precisely the subset
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Figure 2.7: Results of first pass.
of M(P) that gets matched with vertices in [uL,vL]-

The candidates for the remaining vertices in B, 1i.e.,
fu,,v.] are clearly T(L) U M(R). From the way Slover's
algorithm works, it is also clear that the vertices of T(L)
U M(R) that will get matched to (u_,,v.] are a subset of T(L)
J 2(R). Let this subset be S'. wR Bsn to show that § is a
legitimate choice for S8'. First, we show that S represants
a feasible matching. Then, we shall show that S is in facc
selectable by Glover's algorithm.

We know that Q(R) can be matched into Lu yVpole Let 4 be
any such matching. Since S is selected by FEAS, we know
that every vertex in S can be matched to a vertex in [u,,v_]
in a such a way that no vertex j in S is matched to a vertex
with index greater than hj' Consider a matching W tnat
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meets this condition. Now suppose that som2 vertex j in §
is matcned to a verctex q in [uR,v ] with index less than s;.
Clearly, j must be a member of Q(ﬁ) (as all vertices in T(E)
nava an s value less than u,). Suppose that j is matcned to
jl in 2. 1If j,, is free in W, then the matching of j in W
M3y be changed from q to j,. If j, is not free, then sup-
pose it 1is matched to “3j,. I j,<«T(L), then j, may be
matched to q and j to jl (no%e that g<3; and so sj %q<hj ).
Lf j,<Q(R), then suppose that j, is matched to j fn Z. 21:
is eagy to see that jj#j . If y2j, or j, is free in W, then
we may match j to jl ané j2 to g.~ Othefwise, let j, be the
vertex matcnad to j, in W. "It should be clear that "we can
continue 1ia this “way and modify W so tnat j is matched to
jl' j., to 33' jy, to jes 2tc. ILn tne new matchiag, there 1is
ofe ewer veréex o] S that is matched to a vertax with
smaller s value.

Repeating the abpove construction several times, W can
be transformed into a matching such that every vercex j<S is
matched to a vertex q such that wup<s.<g<h.<v.. dence, 5
rapresents a feasible matching. J J

Let S' (as defined earlier) be the subset of Q(R) U
T(L) matched by Glover's algorithm to the vertex set
Lu,,v,]. We snall now proceed to show that 38 is a valiad
choice for S'. Let Z be any matcaning of Q(R) into (u,,v.].
Lat Y be a matching of S8' in which all vertices in Q(R§ nRS'
are matched to the same vertex in [u,,v,] as in tne matching
Z. Let W be a corresponding matching for S. The existence
of tne matchings Y and W is a consequence of the construc-
tion used to show the feasibility of S.

From the definition of S', 1t follows that 3'#S. Also,
from the working of FEAS, it follows that S#£S'. Let j<S be
a vertex with least h, such that j # sS'. If no sucn j
exists, tnen S=S'. ssume that j is imatched to q in W. I[If
g is free in Y, then S8' cannot be of maximum cardinality.
So, let P<4S' be matched to g in Y. By definition of Y and
N, p # 3. Also, from the order in which FEAS considers ver-
tices, h >n.. Hence, S'U{j}-{pl] is also a subset selectaole
oy Glove?TsJalgorithm. S' U (jl-{p} agrees with 3 in one
place more than does S'.

By repeating this interchange process, 5' may be
transformed into S with the result that S is also a maximum
cardinality subset of Q(R) U T(L) that is selectable by
Glover's algorithm for matching in [uR,vR].

Hence, Q(L) U S is a maximum cardinality subset of M(P)
selectable by Glover's algorithm for matching in [u,v].P.

]
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Jnce Q(P) is known, T(P) and [(P) are easily computed.
Actually, as I(P) 1is never used, w~e may omit its computa-
tion. Figure 2.6 snows tne 3, L, and T sets (except when
empty) for all nodes in our exampla.

Pass 2

In cthe second pass, for each vertex P of the computation
tree, we compute a sat Q'(P) which represents the set ol A
vertices matcned by Glover's algorithm with the sa2t (u,v].P.
With repsect to the matching shown by solid lines in Figure
2.1, we s2e that if P is the root, then Q, (P) = {1, 2, 3,
4, 5, 7, 8, 2, 14, 11, 12, 14}; if P is node 3 of tne compu-
tation tree, then Q'(P) = {3, 9, 14, 11, 14}.

If P is the root node, then Q'(P)=Q(P), by definition
of Q(P). Let P be any nonleaf node for which Q'(P) has been
computad. Let L and R be the 1left and right children,
respectively, of P. Let [u,v].L = [u ,vL] and [u,v].R =
Lug,vpl. Let v = {j31j<«Q'(P) and h.<u }% Let W Dpe the
orgered set obtained Dby merging t&ge%her V and Q(L) (note
that both V and Q(L) can be maintained so tnat they are in
nondecreasing order of h, and that W is also in nondecreas-
ing order of h,). Q'(L) Consists of the first min {{wl{,
v -u_+1} vertices in W. The correctness of tnis statemenc
may Be established by induction on the distance of P from
the root. Q'(R) is readily seen to be Q'(P)-2'(L). Figure
2.7, shows the Q'( ) sets for all the vertices in the compu-
tation tree of our example.

From tne Q'( ) sets of the leaves, the matching is
easily obtained. If P is a leaf, and [u,v].P=[a,b], then
tne first vertex in Q'(P) is matched with a, the second witn
a+l, etc. (note that Q'(P) is in nondecreasing order of h.).
The matching for our example is also given in Figure 2.7.

Complexity Analysis

Tne initial ordﬁring of A by hy and within h, by S, can Dbe
done in u(logn) time using®n/2 PEs((6) akd (7]}. During
the first pass, the computation of Q() requires the use of
FEAS and a merge. The use of FEAS (without the sort) taxkes
O(logn) time and requires O(IM(P)|/loglid(P)|) PEs. The
merge at node P takes O(logn) time with |M(P)|/2 PEs.
since, Q can be computed in parallel for all nodes on the
same level of the computation tree, O(logn) time is neeged
per level. The total time for the first pass is 0J(log“n)
and n/2 PEs are needed. Pass 2 reguires only some,merging
per node. The total cost of this pass is also 0(log®n) and
n/2 PEs suffice.
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Figure 2.3 Second pass

tHence, tne overall complexity of our parallel algorjthm
for maximum matching in convex bipartite graphs is O0(log“n).
The PE reguirement is 0O(n).

Another complexity measure often computed for parallel
algorithms is the effectiveness of processor utilization
(EPU) (see (1], (2], and [9]). For any problem P and paral-
lel algorithm A, this is defined as follows:

EPU(P,A) =
complexity of fastest sequential algoritham for P

complexity of A * number of PEs used by A

For pour algorithm, we have an EPU that is
o(nm/(log“n*n)) = 0(m/log“n) (recall that m=|Bl|).

id
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3. Applications to Scheduling

we nave already seen ona applicacion of maccnings in coavex
bipartite graphs to scheduling. This application was to a
problam that is actually isomorpnic to the matcning problem;
viz. Find the maximum number of unit ctime joos £rom
J={(r;,3,)] 1<i¢<n} that can be scheduled on a single machine
such “thit no job is scheduled before its release time r. or
after its Jue time d,. In tnis section, we snall look" at
three other scheduling problems that can be solved in an
efficient manner wusing the parallel matching algocithm
developed in previous section.

3.1 Scheduling to Minimize the Maximum Cost

In this problem, we are given n unit time jobs. Associated
with each job is a release time c; and a nondecreasing cost
function c,;(), 1l<i<n. Let S=(sa.sz....,s ) pe a one machine

schedule for the n jobs. s. dendtes th® start time of job
i. Let g; be as defined beloWw:

(s, or,
c;(s;) s;>r,

|
a=l
1 ‘ [o]o] si<ri
|

The cost of S5 is defined to be max[qi}. We wish to find a
schedule with minimum cost.

As pointed out by Rinnooy Kan (8], this problem may be
solved by first determining the finish time of a minimum
finish time schedule for tne n jobs. If the n jobs are
already in nondacreasing order of relzase times r., tnen a
minimum finisn time schedule has start times $; given by:

(3.1) S, =r

1 "1

sismin{ri, s +1}

i~-1

i This eguation is a special case of Egquation (6.1) of
{l] and so we may use algorithm PADMIS of L1l] to obtain the
8.8. The finish time, C*, of a minimum finish time schedulse

£&r the n jobs is s, + l.

For simplicity, let us assume that r, = J. Once C* has
beaen computed, a schedule that has minimum cost may be
obtained by constructing the convex bipartite graph, G, with
a={1,2,...,n} and B={4,1,...,C*~1}. There is an edge from i
in A to j in B iff j>r.. (A represents the jobs and j <« B
represants the time s}ot
ated with edge (i,j).

(3.3+1]1). A cost ¢;(j) is associ-




- ' ToTTmme M

- 15 =

From our cnoice of C¥, it follows that the graph just
constructed has 3 maximum matching M of size n. Every such
matcning defines a fzasible schedule. A matcning for which
che maximum edge cost is minimum defines the optimal match-
ing for our scheduling problem.

As suggested by Rinnooy Kan [8], this matching an be

obtained by performing a binary search on the 0(n“}) adge

costs in G. At each iteration of this binary search, all

edges with cost greater than c are dzleted from G and a max-

imum matching in the resulting <convex bipartite grapn G'

found. If tnis matcning is of size less tnan n, then there

is no macching in G with maximum edge cost no more thaa C;:
otnerwise there is.

Complexity Analysis

The initial sort by release times can be done in O(logzn)
time wusing 0(n) PEs [7]. C* can be found in O(logn) time
using n Pds and the algorithm of {1]. Each iteration of the
binary search regquires the construction of G' and the solu-
tion of a,matching problem. Tge fiist of these can be done
in J(log“n time wusing 9(n“/log®n) PEs. Tne second task
’ takes U(log®n) time and O(n) P&s. The total time needed to
deterygine the matching with minimum cost 1is Ehere ore
0(log”n) and the number of PEs neaded 1is J(n“/log“n).
Hence, the overalls complexity of the parallel scneduling
angrithQ is 0(log™n). The number of PEs used is
0(n“/log“n) The complexity of the fastest sequential algo-
rithm known for,this proplem (i.e., the algoritnm described
abova) 1is (n“logn).. Hense, the APU of our parallel algo-
rithm is 0(n“logn/(log”n* n“/log“n))=0(1).

Jdnce again, each job has a processing requirement that is
one unit. However, this time there is a release time r,.,
deadline d., and w2ight w, associated witnh job 1i. No jéb
may be schdduled before its relsase time. We are interested
in obtaining a maximum weight subset of the n jobs such that
all jobs in this subset can be scheduled on a single machine
in such a manner that none starts before its release time or
finishes after its deadline.

[
L
i 3.2 Job Sequencing With Release Times and Deadlines

This problem can be solved efficiently by a sequential

greedy algorithm. Jobs are considered in nondecreasing

- order of the weignts. If the job, i, currently being con-
sidered can be scheduled together with all the others so far

scheduled such tnat no job violates its release time or

deadline, thun job i is in the optimal schedule. Otnerwise,

it is not. This feasibility teat can be carried out in O(n)
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time. SO, the sequantial algorithm has complexity o(nz).

For the parallel algorithm, we resort to a convex
bipartice graph formulation. The A set represents the n
jobs; so, |Al=n. fThe B set represents time slots. Let
a=mia{r,} and o=max{d.,}. B = {a,a+l,...,b-1}. In the con-
vax bipértite graph co%responding to the scheduling problam,
there is an edge from i in A to j<4B iff r . <j<d.. The weight
of each edge incident on vertex i<A is w.. welwisn to fiad
a matching 4 for whicn the sum of edge wéights 1s maximum.

Jur parallel algorithm for this is based on the greedy
sequential algorithm for joo sz2quencing witn release times
and ieadlines. Define the binary relation R on tne weights
W, as follows:

Wy R wj iff wi<wj or (wi=wj and i>j)

Let G, be the convex bipartite graph obtained from G by
deleting 3all edges with weight w. such that w, R w,..
Clearly, the following determines whether or not i is'in tHe
maximum weight matching:

a) Determine the size of the maximum cardinality
matching in G,. Let this be s,
b) Delete all eddes incident on ‘vertex i<A of G,.
Determine the size of the maximum cardinaliéy
matching in the new graph. Let this be s'i.
¢) i is in the maximum weight matching iff si=s'i + 1.
So, each vertex can determine, in parallel, whether or
not it 1is in the maximum weignt matchiag. To avoid rzaad
conflicts, we need to make n copies of the graph G. This
can be done in O{logn) time usiBg 0(n“) PEs. G. can be con-
structed in 0(l1) time using 0(n”) PEs per verteX 1i. Tgen,
steps a), b), and c¢) gbove can be performed in J(log” n)
time using a total of 0(n“) PZs. (Note that only pass L of
the parallel convex matching algoritam need be executed.)
Tne total time nez2ded to determine the subse& of A in the
maximum weight matching is tnerefgre 0(log“n). The number
of PEs can easily be reduced to 0(n“/logn).

Once we have obtained the above subset of A, the actual
matching can be determined by deleting from G all vertices
that are not in this subset. A maximum cardinality matching
on the resulting graph yields the desired matching with max-
imum weight. This corresponds to an optimal schedule for
the scheduling problem.

The complexitx of tge parillel algorithm is o(logzn)
and its EPU is 0(n*/(log“n * n“/logn)) = 0(1/logn).

Exmaple 3.1: Figure 3.1 gives an example job set. Let
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d4.={j1iRj}. Figure 3.2 gives the H.,s for our example. The
cBnvax graph G, is shown in Figure 3*3. The maximum matcn-
ing in G, is slown by oroken lines. The maximum matching in
the graphi obtained from G, by dJdeleting edges incident on
vertex 4 is shown by wavy lines. These two matchings are of
the same cardinality. dence, vertex 4 is not in the maximum
waight matcning. []

i r;* 2|13 |415)|61[7])8 ﬁ9 10711
:: 1{4{51})310)4})2161|2)4
E; 3|]6|(6}13}l6|1|6i6|7 37
“ilso{55({65(40(70| 206080603085

Figure 3.1

3.3 Preemptive Scheduling With Precedence Contraints

Let J be a set of n unit time jobs. Let P be a precadeilce
relation on J. For i<4J and j<«J, iPj iff i must be completed
before j can commence. We may assume that P is a partial
order. Hence, P may Dbe represented as a directed acyclic
graph (dag) as in Figure 3.4 (strictly speaxing, P is the
{ transitive closure of this graph). The directed edge <i, j>
means that i must be completed before j can start (i.e., iPj
). Ne also assume that jobsa have been indexed 30 that iPj
implies i<j. This is true of the indexing (of nodes) in
Figure 3.4.

Muntz and Coffman (5] have developed a level algorithm
& to obtain minimum finish time preemptive schedules for J (as
i ‘ above) when the number of machines available is 2. Their
| algorithm also works for the case when the processing times
are mutually commensurable (rather than simply 1 unit). A
. set of times {t., t,, ..., t_ ]} is mutually commensurable iff
; , each is a multiple “of some number w. In the case of
mutually commensurable times, e<ach Jjob is broken into a
: chain of jobs each requiring w units of processing. In tais
section, we shall deal directly only with the case of unit
time tasks.
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H, = {2,3,5,7,8,9,11} H7 = {3,5,8,11}
s; = 6 si'= S Job 1l is in s, = 5 sy =4 Job 7 is in
Hz = {3,5,7,8,9,11} H8 = {11}
s, = 5 si' =5 Job 2 is out s, = 2 si' =] Job 8 is in
H3 = {5,8,11} Hg = {3,5,7,8,11}
= ‘= i t
s, = 4 si’ =3 Job 3 is in si 5 8y 5 Job 9 is ou
HA = {1,2,3,5,7,8,9,11} H10= {1,2,3,4,5,7,8,9,11}
s; =0 si' = 6 Job 4 is vui s; = ) si’ = 6 Job 10 is out
Hg = {8,11} P {0} e
=1 '=0 Job 1 s in
s =3 s.'=2 Job5 4s in 51 Sy L e
i i ————
H6 = {1,2,3,4,5,748,9,10,11}
= ' =
sy 7 si 6 Job 6 is in
Figure 3.2

Let G pe the day representation of the precedence rela-
tion P. A node in G is terminal iff its out-degree is 0.
Fhe level of a node in G is the length of the longest path
from v to any terminal node. All terminal nodes nave level

J. In Figure 3.4, the number outside =ach node 1is 1its
level.

Muntz and Coffman's {5] algorithm to obtain wminimum
finish time 2-machine schedules is given in Figure 3.5. One
observes that the objective of tne for loop of this algo-~
rithm is to minimize the number of sets 5., with |s K |=1l.
This can be done in parallel as follows. Let be the “max~-
imum lavel in the precedence graph G. Let L be the level
of vartex i in 3. Let D, be the length of the longest path
from any vertex with "no predecessors to i. Let H.,=L-D..
The [Li.DiJ pairs of each vertex in our example is given n
Figure™ 374. Note that H, is the largest j such that job i
could possibly be in S, following the execution of the for
loop in the Muntz-Coffgan algoritrm.

- A job i is said to be critical iff L, =H,. Only non-
‘ critical jobs are candidates for EIsplacemgntlto other sets.
. Also, only those sets S, that initially have exactly one
critical ijob are candtates to receive a new job during the
for loop. Note that every Si must have at least one
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Figure 3.3

critical job. In Figure 3.6, the noncritical jobs nave been
marked witnh an X. Sets that are candidates to receive a new
job have also been marked with an X. Double vertical lines
mark set boundaries.

To determine the movement of noncritical jobs to candi-
date sets, we construct a convex bipartite graph ia which
the A set consists of the noncritical jobs while the B sat
consists of the candidate sets. There is an edge from i<A
to jeB iff L. < j < d.. For our example, the resulting
graph is shown in Figﬁre 3.7.

We intend to use a maximum matching M in the graph con-
structed above as follows: if (i,j) is an edge of the match-
ing M, then job i is moved to set S.; vertices of A that are
not matched to any vertex in B remain ia their original set.

The maximum matching M is to be obtained from the con-
vex bipartite graph constructed above as follows:
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Figure 3.4
procedure SCH

L 4 maximum level

S, ¢~ all jobs in J with level=i, J<i<L

fér K &« L tol do

Tif IS |=1"then find the largest j such that j<k and

s. contains a job all of wnose pro-
ceéssors are in § g oo,
I1f no such j exlgts Ehén ex;z enéxf
Let g be thls value of j and let r
be the job in Sq with the above pro-

perty {
S ¢ S8 - {r}; 8, e s_U {r}
endif q q k K
endfs?_—

preempt1vely schedule the jobs in each Si using
McNaughton's rule.
Jobs in S1 precede those in S -1°

- end SCH

Figure 3.5 The Muntz-Coffman Algorithm
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Figure 3.7 Convex Bipartite Grapn.

reindex the vertices in B. The new index of vertex
i4B is L-i. So, for i<4A, s.=L-H, and h,=L-L..

use Glover's algorithm considering vertices in B in
increasing order of index.

s’ ,S.
oo%‘s

L- 1e++,8', be the sats obtained by updating
u&ing th maximum matching above. These

EE& sets gatisfy the following properties:

e
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Figure 3.6
A B new index
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(a) There is no joo pair (i,j) such that iPj andi 145'3,
j«s' for a <b.

(p) There is no partition of the job set J that satis-~
fies property (a) and has a fewer numb:r of sets of

size 1 than in S'L,...,S'ﬂ.

For our example, the maximum matching M is
{(2,4),(4,2),(9,1)} (solid 1lines 1in Figure 3.7). So,
s':=s,, 1=0,1,2,5. s';={5,6,7}; and 8',={3,2}. Properties
(a} ahd (b) nold for oir example.

The correctness of (a) follows from the indexing scheme
imposed on the jobs (viz. iPj implies i<j) and the unique
way in which Glover's algorithm works. Supposa tnat state-
ment (a) is incorrect. Then, there exists a job pair (i, j)
sucn that iPj and i4s'a, j«s'. and a<b. 3ince no such job
pair exists in SL' ev+ss S,, it must be the case tnat job j
is noncritical and”is matcngd to b (014 indexing) in M (as
only noncritical jobs caan change sets and no job moves to a
set of smaller index). From the definition of L and H and
the knowledge that iPj, it follows that H.,>L., d. > L.,
L.>L., and H,>d,. If job i is critical, then it is tHe zase
thatJy,. >d,. 'so? job j cannot possibly be matched to a set b
with a%b.Jdence, we may assume that i1 is also noncritical.
Again,” if i is not matched in M, then a>b as for a to be
less than or equal to b, it must be the casa that L, <H..
But since iL_,>L., h.<h. and i must get matched to b bef re]j
can (see Glo¥Yerlds aigoéichm). dence, i and j must both be
matched in M. i is matched to a and j to b. dence, a # b.
If a<b then vertex b is considered bpefore a (as its new
index is L-b<L-a). Since i P b, it must be the casa that d,
>b > L.. Also, L,>L. implies that h,<h.. Hence, Glover's
Jlgorithm will matdéh f to b and not j toIb.

The truth of property (b) is established using the fol-
lowing reasoning. If i4B is such that no vertex of A is
matched to i in M, then |S' |=1. To see this, observe that
S;  has exactly one criticil job. Every noncritical joo in
8. is a candidate for matching with i<B. Thus, if no job is
mitched with i, then all these noncritical jobs are matched
elsewhere and |3'.l=1. It is readily seen that if i<B 1is
watcned in M, then Is' | >1. Hence, the number of sets of
size 1 is minimized when™a maximum matching is used.

Complexity Analysis

The steps in our parallel preemptive scheduling algorithm
are:

l) Determine L, and H,, l<i<n

2) Mark the noficriticil jobs

3) Mark the candidate sets

4) Construct the convex bipartite graph

sk —
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5) Find the maximum matching i1

5) Reassign matched joos to their new sets

7) Scnedule jobs in the same set usiag McNaughtons
rule.

Step 1 can be performed in O(logzn) time using the
critical patih algorithm developgd by Dekel, Nassimi, and
sanni [3J). This algorithm uses O(n”/logn) PEs. The noncrit-
ical jobs <can be identified in O(1) cime using n PEs. The
32ts S,,...,8 may be obtiined in O(logn) time by sorting on
Li. This rgquires 0(n®) PEs. The candidate s2ts can be
mdrked in O(logn) time and the resulting c¢oavex bipartit
grapn may be constructed in an agditional J(1l) time using n
PEs. The matching requires 0(log“n) time and O(n) PEs while
the reassigning takes O(1l) time. A parallel implementation
of MCNaughtons rule appears in [1]. This has complexity
O(logn) and uses O0(n/logn) PEs.

dence, the overall complexity of our seven steg paral-
121 algorithm for preemptige scheduling is 0(log a). The
number of PEs wused 1is 0O(n~/logn). Since, the fastest
sequential algorithm known for this prgblem (i.e., the
Muntz-Coffman algorithm) has complexity J(n“), the EPU of

2

our parallel algorithm is o(nz/(log n*n3/1ogn)) =

o{(l/(nlogn)).

4. Conclusions

We have devaloped fast parallel algorithms for several ver-
sions of tne matching problem for convex bhipa:tite gravhs.
In Section 2, we explicitly considered the muximum cardinal-
ity matching problem. In Sections 3.1 and 3.2, we con-
siderad the problems of obtaining a maximum matching that
minimized the maximum weight edge used as well as on2 tnat
maximized the total weight of the used edges. Bcin tnese
problems were discussed in connection witn the scheduling
proolems in whicn they naturally arosa. Finally, tne maxinum
cardinality matching algoritnm was again used to solve the
preemptive scheduling problem of Section 3.3 efficiently.

This paper has further enhanced the utility of the
binary tree metnod of Dekel and Sahni [2] fnr the design of
parallel algorithms. It should also be pointed out that
while all of our complexity analyses nhave assumed the avai-
labilicy of as many PEs as needed, our algorithms can be
used when fewer PEs are available. The complexity of each
algorithm will increase by no more than the shortfall in
PEs. So if only half the number of PEs is available, then
tne time needed will at most double (except for a possible
constant increase in overhead).
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